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Summary

Genetic diversity is the basis for successful crop improvement and can be estimated by different methods. The
objectives of this study were to estimate the genetic diversity of 30 ancestral to modern hard red winter wheat
(Triticum aestivum L.) cultivars adapted to the Northern Great Plains using pedigree information, morphological
traits (agronomic measurements from six environments), end-use quality traits (micro-quality assays on 50 g grain
or milled flour samples for the six environments), and molecular markers (seed storage proteins separated using
SDS-PAGE, 51 SSRs, and 23 SRAP DNA markers), and to determine the relationships of genetic distance estimates
obtained from these methods. Relationships among diversity estimates were determined using simple (Pearson)
and rank (Spearman) correlation coefficients between distance estimates and by clustering cultivars using genetic-
distances for different traits. All methods found a wide range in genetic diversity. The genetic distance estimates
based on pedigree had the highest values due to possible over-estimation arising from model assumptions. The
genetic diversity estimates based on seed storage protein were lowest because they were the major determinants
of end-use quality, which is a highly selected trait. In general, the diversity estimates from each of the methods
were positively correlated at a low level with the exceptions of SRAP diversity estimates being independent of
morphologic traits (simple correlation), SDS-PAGE, and SSR diversity estimates (rank correlation). However, SSR
markers, thought to be among the most efficient markers for estimating genetic diversity, were most highly correlated
with seed storage proteins. The procedures used to accurately estimate genetic diversity will depend largely upon
the tools available to the researcher and their application to the breeding scheme.

Abbreviations: COD, coefficient of diversity; COP, coefficient of parentage; GS, genetic similarity; GD, genetic
distance; GEI, genotype by environment interaction; HMW, high molecular weight; LMW, low molecular weight;
SDS-PAGE, sodium dodecyl sulfate–polyacrylamide gel electrophoresis; SSRs, simple sequence repeats; SRAPs,
sequence-related amplified polymorphism

Introduction

Genetic diversity has played a vital role in the suc-
cess of crop improvement. Knowledge of genetic diver-
sity has been successfully used for efficient germplasm
management and utilization, genetic fingerprinting and

genotype selection (FAO, 1998; Engles et al., 2002).
However, there are many methods for estimating ge-
netic diversity. Morphological traits (syn. phenotypic
traits) are commonly used to analyze genetic diversity
since they provide a simple way of quantifying ge-
netic variation while assessing genotype performance
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under normal growing environments. However, mor-
phological traits are limited in number, modified by
the environment and may be controlled by epistatic
and pleiotropic gene effects (van Beuningen & Busch,
1997b). Despite these limitations, morphological traits
have been successfully used for genetic diversity anal-
yses and cultivar development.

In addition to agronomic performance, cultivar de-
velopment with acceptable end-use quality is a major
objective of winter wheat (Triticum aestivum L.) breed-
ing programs (Baenziger et al., 2001). Though end-use
quality is a complex characteristic, several traits have
been identified for predicting relative end-use quality
for milling and bread making. These traits include SDS-
sedimentation value, grain protein composition, and
Mixograph time and tolerance (Baenziger et al., 2001).
Though environment influences most end-use quality
traits, these traits are genetically controlled and can be
used in selection. Similar to morphological traits, end-
use quality traits may be useful for genetic diversity
studies and predicting genetic variation in a breeding
program.

In addition to studying diversity with morpholog-
ical traits, pedigree information is used to compute
pairwise coefficients of parentage (COP), which have
been used as an inexpensive indicator of genetic diver-
sity for cultivars of self-pollinating species with known
pedigrees (Almanza-Pinzon et al., 2003; Murphy et al.,
1986; Souza & Sorrells, 1989). The COP is an indirect
estimate of the genetic relationship between two culti-
vars based on the probability that a random allele taken
from a random locus in cultivar X is identical by descent
to a random allele taken from the same locus in cultivar
Y (Cox et al., 1985). Coefficient of parentage estimates
are limited by errors describing the pedigree and the
assumption that ancestral lines are unrelated. Further-
more, COP analyses may over- or under-estimate ge-
netic similarity between cultivars due to selection and
re-selection biases (Almanza-Pinzon et al., 2003; Cox
et al., 1986; Souza & Sorrells, 1989). However, COP
analyses can indicate cultivars less likely to possess
similar genes (May et al., 1995). In wheat, extensive
pedigree information is available and can be used to
estimate genetic relationships and diversity in winter
wheat cultivars and parental germplasm (Murphy et
al., 1986; van Beuningen & Busch, 1997a) and to iden-
tify parents that have contributed to yield improvement
(Beer et al., 1997).

A fourth way to estimate genetic diversity is with
molecular markers. Molecular marker analyses over-
come many of the limitations of morphological and

end-use quality traits, and pedigree information-based
genetic diversity analysis (Gupta et al., 1999). The most
commonly used molecular markers in wheat histori-
cally have been seed storage proteins (glutenins and
gliadins). They have been recommended as reliable
genetic markers to differentiate wheat genotypes for
breadmaking (Payne & Lawrence, 1983; Graybosch,
1992). HMW glutenin subunits are encoded by Glu-A1,
Glu-B1 and Glu-D1 on the long arms of chromosomes
1A, 1B and 1D (Payne, 1987) and the LMW glutenin
subunits are encoded by Glu-A3, Glu-B3 and Glu-D3
on the short arms of the same chromosomes (Gupta
& Shepherd, 1990). The large gliadin families, mainly
gamma and omega gliadins, are encoded by the Gli-1
loci on the short arms of group 1 chromosomes, tightly
linked to the LMW-glutenin genes at the Glu-3 loci
(Tatham & Shewry, 1995) and by the Gli-2 loci found
on the short arms of group 6 chromosomes. Genetic di-
versity among cultivars based on seed storage proteins
is measured only in relation to chromosome groups 1
and 6 and the variation may be limited because end-use
quality is a highly selected trait in many programs.

Simple sequence repeats (SSRs) are common, in-
formative molecular markers used for genetic diver-
sity studies because of their simplicity, high levels of
polymorphism (Plaschke et al., 1995; Huang et al.,
2002), high reproducibility, and co-dominant inheri-
tance patterns (Roder et al., 1998). These markers are
chromosome-specific (often amplifying a single locus
with multiple alleles), can be evenly distributed along
different chromosomes (Roder et al., 1998), and can
be used by researchers to tag useful genes. Numerous
wheat SSR markers are available and many have been
mapped to specific chromosome arms (Bryan et al.,
1997; Roder et al., 1998; U.S. Wheat and Barley Scab
Initiative, 2003). Consequently, SSR markers are excel-
lent markers for genetic diversity analyses and geno-
type identification in self-pollinated species such as
wheat (Domini et al., 2000). SSR markers have been
used to estimate genetic diversity in wheat germplasm
(Manifesto et al., 2001; Huang et al., 2002), elite lines
(Kim & Ward, 1997; Prasad et al., 2000) and cultivars
(Plaschke et al., 1995; Bohn et al., 1999).

In addition to SSR markers, sequence-related am-
plified polymorphism (SRAP) is a new molecular
marker system for genetic diversity studies in plants.
SRAP is a PCR-based DNA marker system that gen-
erates multiple fragments in a single PCR reaction (Li
& Quiros, 2001). SRAPs amplify several reproducible
and polymorphic loci and alleles, and they may amplify
functional genes since they are sequence related. As
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opposed to SSR markers, which tag single multiallelic
loci, SRAP markers possess multiloci and multiallelic
features, which make them potentially more efficient
for genetic diversity analysis, gene mapping and fin-
gerprinting genotypes. However, SRAP markers may
not be randomly distributed across the genome (Li &
Quiros, 2001). Limited information is available on the
chromosomal locations of SRAP markers, their link-
age with plant traits, and the potential of SRAP markers
for genetic diversity studies in wheat. Therefore, SRAP
markers were employed to examine their potential for
genetic diversity analyses in hard red winter wheat.

Though there are many methods to measure genetic
diversity, few studies have examined the relationships
between them. Comparing results from different ge-
netic diversity methods could identify the best method
for parental selection for plant breeders (Barrett et al.,
1998), thus increasing breeding efficiency. The rela-
tionships between diversity estimates can be assessed
using scatter plots, correlation, regression and princi-
pal coordinate plots (Weir, 1996). The objectives of
this study were to determine the genetic diversity in
ancestral lines of modern hard red winter wheat culti-
vars adapted to the Northern Great Plains using pedi-
gree information, morphological traits, end-use quality
traits, and molecular markers, and to determine the re-
lationships of genetic distance estimates obtained from
these methods. The chosen methods of determining
genetic diversity were pedigree, morphological, and
end-use quality traits as these are readily available to
most breeding programs. Among the molecular mark-
ers, seed storage protein composition is often avail-
able. Genetic diversity data for SSR and SRAP markers
are generally not available unless the goal is to under-
stand diversity. In addition, end-use quality and related
seed storage proteins are highly selected traits, whereas
SSRs markers are generally considered neutral traits.
Hence, the comparisons of genetic diversity estimates
in this study involve estimates from readily available
data to estimates that require additional work for their
derivation, and estimates from highly selected traits to
estimates from neutral traits.

Materials and methods

Plant materials

The study consisted of 30 hard red winter wheat cul-
tivars representing historically the most important an-
cestral lines and commonly grown cultivars over the

last 130 years in the Northern Great Plains (described
in detail in Fufa et al., 2005). ‘Turkey’, ‘Red Chief’,
‘Kharkof’, ‘Cheyenne’ and ‘Wichita’ are historically
important parents for many subsequent hard red winter
wheat cultivars. ‘Scout 66’, ‘Baca’, and ‘Eagle’ are di-
rect pure line selections from ‘Scout’. ‘Sturdy’, ‘TAM
107’, ‘TAM 200’, ‘Colt’, ‘Karl 92’ and ‘Chisholm’
are important semidwarf cultivars. ‘Arapahoe’ (Baen-
ziger et al., 1989) is a major parent for recent cultivars
such as ‘Millennium’ and ‘Wahoo’ and was the most
widely grown cultivar in Nebraska in the early 1990s.
‘Pronghorn’ is a recent high yielding and tall cultivar
(Baenziger et al., 1999).

Pedigree history was traced for each cultivar to
compute the pairwise COP between cultivars using the
KIN software program (Tinker & Mather, 1993) to de-
termine the degree of genetic similarity among cul-
tivars. The coefficient of diversity (COD) calculated
as 1-COP was used as a measure of the dissimilar-
ity of parentage among cultivars. The COP computa-
tion assumed that each cultivar is completely inbred
(homozygous) and homogeneous. Cultivars without a
known common ancestor are assumed to be unrelated
(COP = 0) and parents are assumed to contribute alle-
les equally to the offspring despite selection (Cox et al.,
1985). Furthermore, the COP calculation considers that
cultivars derived by backcrossing at least five times to
their recurrent parents were genetically equivalent to
their parents (Kempthorne, 1969).

Field evaluation, morphological and end-use quality
characterization

The 30 cultivars were grown at Lincoln, Mead and
North Platte, Nebraska during the 2002 and 2003 sea-
sons (described in detail in Fufa et al., 2005). The
morphological traits used in this study were days-to-
anthesis, plant height, grain yield and grain yield com-
ponents, and grain volume weight. The traits used for
determining end-use quality were: flour yield, flour
protein content, Mixograph mixing time and tolerance
(hereafter referred to as mixing time and tolerance),
and SDS sedimentation volume (Fufa et al., 2005).

Molecular marker analyses

SDS-PAGE was performed using the procedure of
Graybosch and Morris (1990). Glutenins were sepa-
rated in a vertical and discontinuous SDS-PAGE using
a Tris–HCl buffer system. Gliadin subunits were sep-
arated on 11% acrylamide gel. The bands of HMW-
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GS on SDS-PAGE were scored using the standardized
methodology and nomenclature described by Payne
and Lawrence (1983). The identities of HMW glutenin
subunits were determined by comparison with those of
standard cultivars, such as Siouxland, Abilene, Cimar-
ron and TAM 107. Clear and reproducible gliadin
subunit compositions were scored for each cultivar.
Gliadins migrating between molecular weights of 21.5
and 45 kDa were scored using Scout 66 as a standard.
Scout 66 gliadins in this region were scored in order
of decreasing molecular weight and numbered from 1
to 11. Gliadin proteins not co-migrating with those of
Scout 66 were designated by decimal or alphabetical
postscripts. Wheat lines with 1BL.1RS or 1AL.1RS
wheat-rye chromosomal translocations also produce
secalin proteins as part of the gliadin fraction. Secalins
were designated as S1, S2, and S3 after Graybosch et al.
(1999).

For SSRs and SRAPs, DNA extractions were car-
ried out following the CTAB method (Saghai-Maroof
et al., 1984) with slight modifications (Kuleung et al.,
2004). Genomic DNA was extracted separately from a
randomly selected sample of eight plants representing
each cultivar and bulked at equal quantities for poly-
merase chain reaction (PCR) reactions. Of the 154 SSR
primer pairs (Roder et al., 1998; U.S. Wheat and Bar-
ley Scab Initiative, 2003) screened for amplification
and polymorphism, 68 wheat SSRs produced ampli-
fication products. The designation, chromosome-arm
location and annealing temperature of SSRs used in
this study was obtained from the GrainGenes database
(http://wheat.pw.usda.gov, January, 2004) or Roder et
al. (1998). At least one SSR marker per chromosome
arm except 2AL, 4DS, 5DS, 5DL, 6AS, and 6DS was
scored and a total of 51 scorable and polymorphic
markers were used in the genetic diversity analysis.

SRAP marker assays followed the same procedures
described for SSR markers (Kuleung et al., 2004; Roder
et al., 1998; USWABSI, 2003) except that the annealing
temperature for SRAP markers was changed to 48 ◦C.
Twenty-three SRAP markers (Li & Quiros, 2001) were
used for diversity estimates.

Statistical analysis

Principal component analysis was computed using
PROC PRINCOMP (SAS, 1996) on correlation ma-
trices. Each phenotypic and end-use quality attribute
was standardized as follows:

Yim = (Xim − X̄im)/SDm,

where Xim is the value for the mth morphological
or end-use character before standardization (m =
1, . . . , M , with M = 10), Yim is the value for stan-
dardized character, X̄im is the grand mean value over
all cultivars of each trait, and SDm is the standard de-
viation across cultivars. The individual character for
each cultivar i (i = 1, . . . , 30) on the variable Xim was
an average value from six environments. The average
normalized Euclidean distance between cultivar i and j
(Di j ) using morphological or end-use quality was cal-
culated following Roldan-Ruiz et al. (2001) as

Di j =
√[∑

(Yim − Y jm)2
]

4M

where Yim and Y jm represent the standardized mean val-
ues for the same traits for cultivar i and j, respectively,
and 4M (M = 10) is the normalizing constant ensuring
that most values will be between 0 and 1. Hierarchi-
cal cluster analysis was performed using SAS PROC
CLUSTER based on normalized Euclidean distance
matrices with the unweighted paired group method
with arithmetic averages (UPGMA) and dendrograms
were constructed by PROC TREE (SAS, 1996).

The SSR and SRAP banding patterns were scored
as present (1) or absent (0) for each primer pair and
cultivar combination. Scored SSR products included
monomorphic markers, but only polymorphic bands
were considered in the genetic analysis. Gene diversity
(DL ) for each locus was calculated as DL = 1 −∑

P2
li

and average genetic diversity (D) as a measure of ge-
netic variation was estimated using the formula:

D = 1 − (1/L)
∑

l

∑
i

P2
li ,

where Pi is the frequency of the ith allele at the l lo-
cus, where L is the number of loci (Weir, 1996). The
genetic similarity coefficients (GS) or the Dice coeffi-
cients (Sneath & Sokal, 1973) were computed between
pairs of 30 cultivars to obtain a genetic similarity ma-
trix based on SSR and SRAP banding patterns. Genetic
similarity between two cultivars within one locus was
calculated using the formula

GSi j = 2Ni j/(Ni + N j ),

where Ni and N j represent the total number of bands
present in cultivars i and j, respectively, and Ni j refers to
the total number of bands common to the same cultivars
(Nei & Li, 1979). Thus, GSi j reflects the proportion of
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bands in common between two parents and may range
from 0 (no common bands) to 1 (identical profiles for
two bands). Genetic similarity between two cultivars is
the average similarity over all loci and the coefficient
of dissimilarity between them is therefore computed
as GDSSR = 1 − GSi j (Nei & Li, 1979). The value of
genetic dissimilarity coefficients is also considered to
be the distance between pairs of cultivars and usually
ranges from 0 (when bands in two lines are identical)
to 1 (when there are no bands in common between two
cultivars). Similar to SSRs, SRAP amplified fragments
were scored as present (1) or absent (0) for diversity
analysis. Protein subunits were also converted to a bi-
nary matrix consisting of present (1) or absent (0) for
diversity analysis. Genetic diversity of a genotype is
the average diversity of all loci (Nei & Li, 1979). Ge-
netic distance matrices were used to cluster cultivars
using hierarchal cluster analysis based on UPGMA and
the results were used to construct dendrograms. Clus-
ter analyses were analyzed using the same procedure
based on glutenins and gliadins. All analyses of genetic
diversity based on SSRs, SRAPs and protein compo-
sitions were performed by the NTSYSpc version 2.1
computer software program (Rohlf, 2000). Correlation
(simple and rank) and cluster analyses based on genetic
distance were used to examine the relationships among
genetic diversity estimates.

Results and discussion

Genetic diversity and relationships among cultivars

The genetic distances for each method (Table 1) and
the clusters based on genetic differences (Table 2) indi-
cated that the methods varied greatly in their estimates
of genetic diversity and to a lesser extent in the clusters
they generated. As some methods appeared to overes-

Table 1. Means, standard deviation and ranges of genetic distance matrices based on pedigree, morphological traits, end-use quality
attributes, proteins, SSRs, and SRAPs among 30 hard red winter wheat cultivars

Parameters GDped
a GDmoph

b GDquality
b GDproteins

c GDSSRs
c GDSRAP

c GDallmolmarkers
c

Mean 0.895 0.500 0.499 0.245 0.427 0.357 0.359

Maximum 1.000 1.917 1.997 0.586 0.698 0.677 0.524

Minimum 0.125 0.060 0.018 0.000 0.171 0.111 0.141

Standard deviation 0.152 0.311 0.397 0.118 0.082 0.094 0.067

aGDped is genetic distance based on pedigree, calculated as 1-KIN coefficient (Tinker & Mather, 1993).b GDmorph, and GDqual, are genetic
distances obtained from morphology and end-use respectively and calculated as described by Roldan-Ruiz et al. (2001).cGDproteins,
GDSSRs, GDSRAP and GDallmolmarkers are genetic distances obtained from proteins, SSRs, SRAPs and all molecular markers (proteins,
SSRs, and SRAPs), respectively, calculated based on Nei and Li (1979).

timate and others underestimate genetic distances be-
tween cultivars, the threshold level at which the same
number of clusters formed from different methods also
varied. The threshold increased as the method overes-
timated the distance between cultivars. Hence, rather
than using an arbitrary threshold level and arbitrary
number of clusters, only meaningful clusters were con-
sidered. A very similar number of clusters (4 for mor-
phology, seed storage proteins, and all markers; 5 for
end-use quality and SRAPs, 6 for SSRs, and 7 for pedi-
gree) with the threshold from 0.43 to 0.95 were found
from different methods in this study (Table 2). Rep-
resentative dendograms for the lines based on pedi-
gree information (Figure 1), morphological informa-
tion (Figure 2), seed storage proteins (Figure 3), SSRs
markers (Figure 4) and combining all molecular mark-
ers (seed storage proteins, SSRs, and SRAPs; Figure
5) are presented to help visualize the clusters.

The pedigree-based genetic distance estimates be-
tween most cultivars were higher on average than other
diversity measures (Table 1). Larger average distance
values in pedigree-based genetic distance estimates are
expected because the method does not allow interme-
diate values for many pairwise comparisons between
zero and one, assumes that ancestors are unrelated, and
assumes no selection and equal contribution of parents
to the progeny. In studying and comparing the differ-
ent methods of estimating genetic diversity or related-
ness and the clusters, the differences among the meth-
ods can be illustrated by the five ancestral cultivars
(Turkey, Cheyenne, Red Chief, Kharkof, and Wichita).
Using pedigree analysis, each was placed in a separate
cluster. Turkey was clustered with Scout 66 and other
Scout selections and derivatives (Table 2). Cheyenne,
which is believed to be the foundation of the Nebraska
breeding program, was clustered with many of the mod-
ern Nebraska cultivars. Wichita was clustered mainly
with lines developed in the southern Great Plains. The
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Table 2. List of hard red winter wheat cultivars in the major clusters based on pedigree, morphology, end-use quality trait
and molecular markers. Ancestral cultivars (Turkey, Cheyenne, Red Chief, Kharkof, and Wichita) are in bold

Trait Cluster Cultivars

Pedigree I Turkey, Scout 66, Eagle, Baca, Sage, Buckskin, Bennett and Nekota
II Colt, Pronghorn and TAM 200

III Cheyenne, Warrior, Siouxland, Redland, Centurk 78, Centura, Arapahoe,
Wahoo Culver and Millennium

IV Wichita, Sturdy, Chisholm, Alliance, TAM 107 and Niobrara

V Karl 92

VI Red Chief

VII Kharkof

Morphology I Turkey, Kharkof, Red Chief, Wichita and Cheyenne

II Warrior, Scout 66, Buckskin, Baca, Eagle, Sage, Bennett, Arapahoe, Centura,
Pronghorn, Sturdy, Niobrara, Wahoo, Culver, Millennium, Centurk 78,
Siouxland, Colt, Nekota, Chisholm, Karl 92, TAM 107 and Alliance

III TAM 200

IV Redland

End-use
quality

I Turkey, Wichita, Kharkof and Red Chief

II Sturdy, Siouxland, Millennium and Alliance

III TAM 200

IV Cheyenne, Baca, Bennett, Warrior, Scout 66, Colt, Sage, Nekota, TAM 107,
Culver, Redland, Arapahoe and Niobrara

V Eagle, Karl 92, Buckskin, Centurk78, Centura, Pronghorn and Chisholm

Proteins I Turkey, Centurk 78, Centura, Karl 92, Kharkof, Warrior, Eagle, Sage,
Redland, Arapahoe and Wichita

II Cheyenne, Pronghorn, Bennett, Alliance, Culver, Buckskin, Millennium,
Wahoo, Colt, Chisholm, Sturdy, and Scout 66

III Siouxland, TAM 107, Nekota, Niobrara, and TAM 200

IV Red Chief

SSR I Turkey, Wichita, Centura, Pronghorn, Centurk78, Millennium and Buckskin

II Scout 66, Baca, Eagle, Sage, Bennett, Nekota, Culver, Redland, Niobrara,
Alliance, Colt, TAM 107, TAM 200, Chisholm, Arapahoe and Wahoo

III Kharkof, Cheyenne and Red chief

IV Warrior and Siouxland

V Sturdy

VI Karl 92

SRAP I Turkey, Scout 66, Bennett, Nekota, Redland, Arapahoe, Millennium and
Niobrara

II Baca, Sage, Alliance, Buckskin, Colt, Chisholm, Karl 92, Siouxland, Culver,
Wahoo and TAM 107

III Red Chief, Cheyenne, Wichita, Sturdy and TAM 200

IV Centurk78, Centura and Pronghorn

V Kharkof, Eagle and Warrior

All markersa I Turkey, Centurk78, Millennium, Wichita, Pronghorn, Centura, Siouxland,
Buckskin and Warrior

II Kharkof, Cheyenne, Red Chief, Sturdy and Karl 92

III Scout 66, Baca, Eagle, Sage, Bennett, Nekota, Culver, Redland, Niobrara and
Alliance

IV Colt, Chisholm, Arapahoe, Wahoo, TAM 107 and TAM 200

a All marker uses the marker information from SSRs, SRAPs, and proteins.
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Figure 1. Dendrogram of 30 hard red winter wheat cultivars as revealed by pedigree information using the average method of clustering.

Figure 2. Dendrogram of 30 hard red winter wheat cultivars based on 10 morphological characters measured at six Nebraska environments
using the average method of clustering.

remaining clusters were small. The distance estimates
between ancestral cultivars and most unrelated culti-
vars were the highest (GDped = 1.00) and assuming no
selection (which would cause similarly selected culti-

vars to be more related) would have inflated genetic
diversity values as was previously reported (Cox et al.,
1985; Murphy et al., 1986; van Beuningen & Busch,
1997a; Almanza-Pinzon et al., 2003). These limitations
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Figure 3. Dendrogram of 30 hard red winter wheat based on genetic distance from proteins (secalins, glutenins and gliadins) using average
method of clustering.

Figure 4. Dendrogram of 30 hard red winter wheat cultivars using SSR markers as per the average method of clustering.

force breeders to consider other methods for estimating
genetic diversity in wheat.

Morphological traits, involving principal com-
ponent analyses, are also commonly used in genetic

diversity estimates. Principal component analyses of
morphological traits (data not shown) found that the
first principal component, which explained 34% of
the total variability among cultivars, contrasted plant
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Figure 5. Dendrogram of 30 hard red winter wheat cultivars based on SSR, SRAPs and proteins (glutenins, gliadins and secalins) as per average
method of clustering.

height and culm length with the grain yield and the
number of spikes per square meter. The result implies
that cultivars characterized by short height were higher
yielding as expected because there are few modern
tall cultivars and no historic semidwarf cultivars. The
second principal component explained 25% of the
total variability and indicated the joint importance
of grain weight per spike and number of kernels per
spike in discriminating cultivars. The morphological
trait-based distance values used to estimate the genetic
relationships between pairs of cultivars ranged from
0.06 (Pronghorn and ‘Centura’) to 1.92 between ‘Red-
land’ and TAM 200 with an average distance of 0.50
(Table 1). The morphology clusters were relatively
uninformative (effectively two clusters – the ancestral
lines, and the non-ancestral cultivars, plus two single
cultivar clusters); however the dendogram was more in-
formative by having additional subclusters (Figure 2).

Grain end-use quality is an important trait for the
commercial value of a cultivar. Microquality-based
variability analyses (data not shown) depicted that the
first PC identified SDS-sedimentation value, mixing
time and tolerance as the most important traits ac-
counting for 46% of the differences among cultivars
whereas the second component identified protein con-

tent and accounted for 24% of the differences among
cultivars. Distance estimates based on five microqual-
ity traits ranged from 0.018 to 1.997 with an average
value of 0.499 (Table 1), which was very similar to that
of the morphological traits. The end-use quality clus-
ters also highlighted the ancestral cultivar similarities
as four of the five ancestral cultivars were in one clus-
ter mainly due to their lower end-use quality by current
standards, particularly low mixing time and tolerance
and SDS sedimentation. The two larger clusters were:
(1) Cheyenne and Scout with their derivatives having
intermediate mixing times and tolerances and (2) cul-
tivars with long mixing times and tolerances (e.g. Karl
92, Pronghorn and Centura).

Seed storage proteins (allelic compositions for
genes encoding high molecular weight glutenins and
gliadins) were determined for the cultivars. Similar to
results of Graybosch (1992), allelic variation was iden-
tified among cultivars at three high molecular weight
glutenin loci. At Glu-A, the allele encoding subunit 2∗

was found in 26 cultivars, whereas subunit 1 was in 2
cultivars, and 2 cultivars were heterogeneous. At Glu-
B1, four allelic combinations (subunits 6 + 8, 7 + 8,
7 + 9, 13 + 16) were identified. The 7 + 9 subunits
were found in 23 cultivars and were heterogeneous in
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two. The 7 + 8 subunits were identified in four cul-
tivars and one heterogeneous cultivar. The rare sub-
units 6 + 8 and 13 + 16 (Graybosch, 1992) were iden-
tified only in Red Chief (6 + 8) and Wahoo (het-
erogeneous for 13 + 16 and 7 + 9). At Glu-D1, the
5 + 10 subunits associated with good breadmaking
quality (Graybosch, 1992; Payne & Lawrence, 1983)
were found in all cultivars except Sturdy, Scout 66 and
Baca, with subunits 2+12, which are generally associ-
ated with poorer bread-making quality. Cultivars var-
ied in their gliadin subunit composition, as they did for
glutenins. With reference to Scout 66, cultivars were
scored for 18 reproducible and polymorphic gliadin
proteins. Secalins were derived from genes located on
1RS rye chromosome segments and were identified
only in Niobrara (1AL.1RS), Nekota (1AL.1RS), TAM
200 (1AL.1RS), TAM 107 (1AL.1RS), and Siouxland
(1BL.1RS), which clustered together.

The average genetic distance estimate (0.245), with
the range of 0.00–0.586 among 30 winter wheat culti-
vars revealed by seed storage proteins was the lowest of
all diversity estimates (Table 1). The genetic distance
estimates between a few cultivars, viz. Baca and Scout
66, and Sage and Eagle, were zero due to their posses-
sion of identical high molecular weight glutenin and
gliadin subunit combinations. This result indicates the
power of selection (Baenziger et al., 2001) to lessen the
genetic diversity of seed storage proteins, especially for
a trait that is controlled by a few major genes. The seed
storage protein clusters also highlighted the similarities
of ancestral cultivars as three of the five cultivars were
in one cluster. Turkey, a heterogeneous line for storage
proteins (Graybosch, 1992), was clustered with Cen-
turk 78 and Centura in which glutenin subunits 7 + 8
were identified. The remaining cultivars in the same
cluster were related as they possess at least 2∗, 7 + 9
and 5 + 10, no secalins and similar gliadin banding
patterns. The second cluster (45% of cultivars) con-
sisted of Cheyenne, Scout selections and most modern
Nebraska cultivars due to their possession of protein
subunits associated with high breadmaking quality (2∗,
7 + 9 and 5 + 10). Red Chief clustered by itself (Table
2, Figure 3).

In addition to seed storage proteins, several other
molecular markers have been developed for diversity
and related studies (Prasad et al., 2000). Sixty-eight
of 154 wheat SSR markers screened for amplification
products and polymorphism information produced a
total of 141 bands (both monomorphic and polymor-
phic bands) across all cultivars (data not shown). The
SSR markers were more polymorphisms than reported

in previous studies (Plaschke et al., 1995; Bohn et al.,
1999). The average number of bands per locus was 3
bands (ranged from 1 to 5). Gene diversity per locus
ranged from 0.289 to 0.958 and the average genetic
distance across all loci in 30 cultivars was 0.623. The
average genetic distance was 0.427 (Table 1).

SSR markers also revealed higher genetic distances
compared to seed storage proteins between most pairs
of cultivars indicating that the cultivars were developed
from diverse germplasm. A similar result was obtained
by Cox et al. (1986), who reported that genetic diver-
sity has increased in hard red winter wheat as opposed
to other wheat classes. In 22 very diverse wheat geno-
types, Sun et al. (1998) observed low RAPD-based ge-
netic distance estimates ranging from 0.062 to 0.340
with an average of 0.179. The higher SSR-based dis-
tance observed in our study could be due to more com-
plete coverage of the genomes with markers or to the
diversity of the lines used in the study. Using a more
diverse set of cultivars, Almanza-Pinzon et al. (2003)
found higher levels of diversity (their data are reported
as similarity). In this study, the ancestral cultivars were
in two clusters. One cluster (I) consisted of Turkey
and Wichita plus mainly other traditional tall wheat
cultivars. Kharkof, Cheyenne, and Red Chief were in
another cluster (III). Most of the remaining cultivars,
Scout 66 or Brule selections and their derivatives, were
in Cluster II.

Twenty-three SRAP markers produced 468 ampli-
fied fragments (including 60 monomorphic fragments)
with an average genetic diversity of 0.418 and range
of 0.10–0.90. The SRAP marker assay revealed up to
three reproducible loci and 7 alleles per marker (data
not shown). The diversity estimates for SRAP mark-
ers ranged from 0.11 to 0.677 with an average value
of 0.357. As such, the SRAP markers provided more
conservative estimates of genetic diversity than SSR
markers. SRAP marker-based clustering (Table 2) was
noticeable for its differences from the SSR clusters,
again indicating that it may be measuring a different as-
pect of genetic diversity. For example, using the SRAP
clusters, Turkey (Cluster I) was not grouped with any
ancestral cultivar, Buckskin (Cluster II), Wichita (Clus-
ter III), Centura (Cluster IV), or Kharkof (Cluster V) as
it was in the SSR clusters. Similarly, the Scout deriva-
tives were placed in three different clusters, Cluster I
(Scout 66), Cluster II (Baca), and Cluster V (Eagle).
Red Chief, Cheyenne, and Wichita were clustered to-
gether as were some related cultivars (e.g. Bennett and
Nekota, Pronghorn and Centura, and Arapahoe and
Redland clustered together). These results indicate that
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SRAP markers have potential for genetic diversity and
genotype identification, but will give different cluster-
ing patterns than SSR clusters.

The combined analysis of genomic regions ampli-
fied by SSRs, SRAP and seed storage proteins gave ge-
netic distance estimates that averaged 0.359 and ranged
from 0.141 to 0.524 and were most similar to the esti-
mates from SRAPs. The combined analysis may have
avoided the underestimates of genetic distances based
on seed storage proteins and overestimates of genetic
distances based on pedigree. The fact that combined
diversity estimates based on several molecular mark-
ers cover more genomic regions than a single marker
alone, genetic distance estimates based on all molecu-
lar markers most likely gave the most unbiased distance
estimates. Using all of the molecular markers (SSRs,
SRAPs and seed storage proteins), Turkey and Wichita
clustered together with mainly tall wheat cultivars.
The remaining ancestral cultivars (Kharkof, Cheyenne,
and Red Chief), clustered with Sturdy and Karl 92.
Cluster III was mainly Scout or Brule selections and
derivatives. Cluster IV included many modern semid-
warf cultivars. Most clusters formed from clustering
using all molecular markers were largely based upon
the contributions of the SSR markers. The only unex-
pected placement of cultivars included the clustering of
Chisholm and Colt with Arapahoe and Wahoo, which
were derived from Brule (Cluster IV) and not with Al-
liance, which had both lines as parents, and the place-
ment of Centurk 78 with Millennium (Cluster I). These
clusters were influenced by the diversity in seed stor-
age protein composition, a highly selected trait, rather
than other markers.

In comparing the clusters and the methods of esti-
mating genetic diversity or relatedness, the differences
again can best be illustrated by the five ancestral culti-
vars (Turkey, Cheyenne, Red Chief, Kharkof, and Wi-
chita). Using pedigree analysis, each was in a separate
cluster. However, all five were clustered together by
morphology, in two clusters (end-use quality, SSRs,
and the combined molecular markers), or three clus-
ters (seed storage proteins, SRAPs). Clearly, pedigree
analysis overestimated diversity because the ancestral
cultivars were assumed to be unrelated if they had no
known common parent.

Correlations between genetic diversity estimates of
cultivars

With the exception of distance estimates based on mor-
phological traits and SRAPS (simple), seed storage

proteins with SRAPs (rank), and SSRs with SRAPS
(rank), all of the genetic distances were positively cor-
related. However, most correlation values were low in-
dicating they explained little of the variation detected
by the other methods of estimating genetic distances.

In general, the correlation between genetic distance
estimates from pedigree and all other diversity esti-
mates tended to be low, probably due to the unreal-
istic genetic assumptions made for calculating COP
(Table 3). Similarly, the correlations between the ge-
netic distance estimated by morphological traits and
the other methods were positive, but also low. This
positive correlation is important because morphologi-
cal traits continue to be an efficient way of routinely
evaluating several lines derived in a breeding program
for breeders without access to laboratory-based assess-
ment tools. The highest correlation was with end-use
quality traits and may be explained by morphology and
end-use quality diversity estimates both being based on
highly selected traits for their estimates, or by the lim-
ited number of lines used in this study.

As expected, end-use quality diversity estimates
were most highly correlated with seed storage pro-
teins, the proteins which have a major impact on end-
use quality (Payne, 1987; Graybosch, 1992). Some-
what surprisingly, the genetic distance estimates from
seed storage proteins were almost equally correlated
to end-use quality as with those from SSRs markers,
which are assumed to be neutral under selection and
were chosen to sample more of the genomes as op-
posed to two homoeologous chromosome groups. This
result may indicate that while many seed storage pro-
teins are retained by selection, others, especially the
gliadins, were neutral in selection similar to SSR mark-
ers. The positive correlation between the genetic dis-
tance estimates from seed storage proteins and SSR
markers suggested that both methods could be used to
estimate diversity among cultivars, though SSR mark-
ers are preferred because selection has less impact and
more of the genome is evaluated. Positive correlation
between molecular markers-based genetic distances
was expected as previously reported (Almanza-Pinzon
et al., 2003; Bohn et al., 1999; Powell et al., 1996).
Some authors reported significant positive correlation
of SSR with AFLP (Almanza-Pinzon et al., 2003; Bohn
et al., 1999) and SSR with COP (Almanza-Pinzon et
al., 2003; Bohn et al., 1999; Kim & Ward, 1997) in
wheat, though limited information is known about its
correlation with morphological data.

The low, positive correlation between diversity es-
timates from SRAPs and all other methods perhaps
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Table 3. Simple and rank correlation coefficients (n = 435) between distance matrices generated using morphological traits, end-use
quality attributes, SSRs, SRAPs, proteins, and pedigree information of 30 hard red winter wheat cultivars

Simple and rank correlation coefficients between distance estimatesa

End-use quality Proteins SSRs, SRAPs Pedigree
Distance measures traits (SDS-PAGE) SSRs SRAPs and SDS-PAGE information

Morphologic traits 0.29∗∗ 0.22∗∗ 0.21∗∗ 0.09 0.28∗∗ 0.21∗∗

0.27∗∗ 0.21∗∗ 0.22∗∗ 0.11∗ 0.27∗∗ 0.13∗∗

End-use quality traits 0.44∗∗ 0.25∗∗ 0.21∗∗ 0.38∗∗ 0.23∗∗

0.40∗∗ 0.22∗∗ 0.17∗∗ 0.34∗∗ 0.20∗∗

Proteins (SDS-PAGE) 0.42∗∗ 0.11∗ 0.64∗∗ 0.28∗∗

0.42∗∗ 0.09 0.61∗∗ 0.24∗∗

SSRs 0.12∗ 0.76∗∗ 0.28∗∗

0.08 0.72∗ 0.18∗∗

SRAPs 0.46∗∗ 0.15∗∗

0.45∗∗ 0.11∗

SSRs, SRAPs and SDS-PAGE 0.36∗∗

0.17∗∗

aUpper and lower figures simple (Pearson) and rank (Spearman) correlation coefficients, respectively. ∗,∗∗Significant and highly
significant correlation at 5 and 1% probability level, respectively.

reflects that SRAPs are sequence related amplified
markers and may measure molecular diversity differ-
ently from other diversity measures used in this study.
It should be noted that the genetic diversity estimated
from SRAPs was lower than all other estimates except
those from the highly selected seed storage proteins.

The genetic distance estimates using all of the
markers (seed storage proteins, SSRs, and SRAPs)
were, as expected, highly correlated to the estimates
from seed storage proteins, SSRs and SRAPs as they
were contributors to the combined distance estimate.
However, the combined marker genetic diversity esti-
mates were also highly correlated to the genetic diver-
sity estimates based on morphological, end-use quality
traits, and pedigree indicating the general utility of this
genetic diversity estimate.

In summary, genetic diversity analyses indicated
that hard red winter wheat cultivars adapted to North-
ern Great Plains were diverse for morphologic, end-use
quality, and molecular markers. Molecular marker-
based genetic diversity estimates between cultivars
revealed inflated pedigree-based genetic distance es-
timates between most cultivars perhaps due to the as-
sumptions for estimating coefficient of parentage. The
lowest genetic diversity was estimated from seed stor-
age proteins, a trait which was indirectly selected via
selection for end-use quality. Genetic diversity based
on end-use quality was considerably higher which may

reflect the difference between a trait that is affected
by environment (end-use quality) and one that is not
(seed storage proteins). Alternatively, it may indicate
that end-use quality is affected by more of the genome
than is sampled by glutenin, gliadin, or secalin bands.
Genetic distance estimates from seven methods of esti-
mating genetic diversity were generally correlated, but
at a low level. There were consistencies and inconsis-
tencies in the cultivar clusters showing their interde-
pendence and complimentary nature. Any one of these
methods could be used to study diversity and group
genotypes, but none would be fully interchangeable in
use. The choice of genetic diversity estimate will de-
pend largely upon the tools available to the researcher
and how they fit into the breeding scheme. For example,
if SDS-PAGE is routinely done, it may be the method
of choice or the method to augment genetic diversity
based on pedigree information though it will under-
estimate genetic diversity compared to DNA marker
estimates. Because the SRAP markers tended to have
low correlation with the other genetic diversity esti-
mates, they may provide different and unique insights
into genetic diversity.
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